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ABSTRACT
BACKGROUND: Stress exposure is one of the greatest risk factors for psychiatric illnesses like major depressive
disorder and posttraumatic stress disorder. However, not all individuals exposed to stress develop affective
disorders. Stress resilience, the ability to experience stress without developing persistent psychopathology, varies
from individual to individual. Enhancing stress resilience in at-risk populations could potentially protect against
stress-induced psychiatric disorders. Despite this fact, no resilience-enhancing pharmaceuticals have been
identified.
METHODS: Using a chronic social defeat (SD) stress model, learned helplessness (LH), and a chronic corticosterone
(CORT) model in mice, we tested if ketamine could protect against depressive-like behavior. Mice were administered
a single dose of saline or ketamine and then 1 week later were subjected to 2 weeks of SD, LH training, or 3 weeks
of CORT.
RESULTS: SD robustly and reliably induced depressive-like behavior in control mice. Mice treated with prophylactic
ketamine were protected against the deleterious effects of SD in the forced swim test and in the dominant interaction
test. We confirmed these effects in LH and the CORT model. In the LH model, latency to escape was increased
following training, and this effect was prevented by ketamine. In the CORT model, a single dose of ketamine blocked
stress-induced behavior in the forced swim test, novelty suppressed feeding paradigm, and the sucrose splash test.
CONCLUSIONS: These data show that ketamine can induce persistent stress resilience and, therefore, may be
useful in protecting against stress-induced disorders.
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Stress commonly precipitates psychiatric illness, particularly in
vulnerable populations. For example, one in five soldiers
returns from combat with posttraumatic stress disorder or
combat-associated major depressive disorder (MDD) (1). Per-
haps more surprising is that many soldiers do not develop
psychopathology. While there has been extensive research on
factors promoting susceptibility to psychiatric illnesses, few
studies have examined what makes individuals resistant or
stress resilient. Until recently, the sparse research on stress
resilience has been predicated on the assumption that it is a
passive property—more or less the absence of the risk factors
that make individuals susceptible to stress-induced pathology
(2). Recent work in animal models suggests that stress
resilience is mediated through active processes and often
distinct, parallel mechanisms to those of susceptibility (3–5).

The idea that increasing stress resilience could protect
against the development of psychiatric disorders is appealing,
but treatments to increase resilience are still in their infancy.
Current interventions fall predominantly on the behavioral side,
with psychotherapy and exercise being the best available tools
to increase resilience (6–8). Rodent studies further support a

role for exercise and enriched environment in stress resilience
(9–11). Beyond behavioral manipulations in mice, researchers
have successfully increased resilience biochemically through
viral and transgenic overexpression methods (12), optogenetic
activation (4), and chronic blockade of stress hormones
(13,14). However, none of these interventions translates to
the clinic. Most promisingly, we have identified the immune
system as a novel target for enhancing resilience. Our recent
work has shown that manipulating leukocytes is sufficient to
increase stress resilience (15) and Hodes et al. (16) have
shown a similar effect by modulating cytokines. Though
hopefully these discoveries will lead to therapeutic interven-
tions in humans, they are not yet clinic ready.

Antidepressants are typically used to treat existing depres-
sive symptoms, but chronic antidepressant treatment also
protects against subsequent depressive episodes (17–21).
Maintenance treatment in MDD patients is often referred to as
prophylaxis against the development of additional depressive
episodes (22). Whether this prophylactic effect against symp-
tomatic episodes in disordered individuals extrapolates out to
preventing de novo psychiatric disorders remains to be tested.
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Ketamine has been shown to have antidepressant effects
as rapidly as 2 hours following a single injection in patients
with MDD (23). Whereas classic antidepressants require
ongoing daily administration to maintain therapeutic efficacy,
ketamine has the benefit of being administered as a single
dose (23,24). Because ketamine has a window of therapeutic
efficacy far beyond its half-life of a few hours (23–25), it is an
excellent candidate for a plausible approach to pharmacolog-
ically increasing stress resilience.

Therefore, we first utilized social defeat (SD) to examine
whether ketamine could increase stress resilience and,
thereby protect against de novo induction of psychopathol-
ogy. We hypothesized that ketamine would confer stress
resiliency to mice if administered before stress. We chose to
perform SD in 129S6/SvEvTac mice, which robustly and
reliably develop a depressive-like phenotype following SD
(26). Mice were administered either saline or a single sub-
anesthetic injection of ketamine, and 1 week later, SD was
administered to half of the mice. We found that a single
injection of ketamine induced robust stress resilience that
persisted for at least 3 weeks postinjection. Moreover, we
confirmed our effects in two additional models in which
depressive/anxious behavior is induced by chronic elevation
of glucocorticoids in C57BL/6NTac mice (27) or by repeated,
unescapable shocks (learned helplessness [LH]) (28–30).
Again, a single subanesthetic dose of ketamine, administered
4 weeks before behavioral assessment, decreased immobility
in the forced swim test (FST) and protected against
depressive-like behavior in the novelty suppressed feeding
(NSF) paradigm and the sucrose splash test (ST). In the LH
model, the latency to escape a shock increases with LH
training and this effect was prevented by prophylactic ket-
amine. These findings demonstrate that the protective effect of
ketamine extends at least 4 weeks postinjection. To our
knowledge, this is the first study to examine the potential of
psychopharmaceuticals to provide long-term prophylactic
protection against the induction of stress-related disorders.

METHODS AND MATERIALS

Mice

Male 129S6/SvEvTac mice were purchased from Taconic
(Hudson, New York). CD-1 mice were purchased from Charles
River Laboratories (Wilmington, Massachusetts) at 8 to 10
weeks of age and housed individually until the start of SD. The
procedures described herein were conducted in accordance
with the National Institutes of Health regulations and approved
by the Institutional Animal Care and Use Committees of
Columbia University and the New York State Psychiatric
Institute.

Male C57BL/6NTac mice were purchased from Taconic
Farms (Lille Skensved, Denmark) at 8 weeks of age and were
housed five per cage before the start of corticosterone (CORT)
treatment. All testing was conducted in compliance with the
laboratory animal care guidelines and with protocols approved
by the Institutional Animal Care and Use Committee (European
Directive, 2010/63/EU for the protection of laboratory animals,
permissions # 92-256B, authorization ethical committee CEEA
n126 2012_098).

All mice were housed in a 12-hour (600–1800) light-dark
colony room at 221C. Food and water were provided ad
libitum. Behavioral testing was performed during the
light phase.

RESULTS

Ketamine Administration Before SD Protects Against
the Induction of Depressive-like Behavior

Mice were administered a single injection of saline or ketamine
(30 mg kg21) (Figure 1A). One week later, mice either remained
group housed (Ctrl) or underwent SD. After 2 weeks of SD,
mice were weighed (Supplemental Figure S2A), and behavior
was assessed.

Classically, immobility in the FST has been interpreted as
an index of hopelessness or a negative mood (31). Rodents
given acute or chronic antidepressants exhibit decreased
immobility (32). Here, on day 2 of the FST, there was an
overall effect of SD on immobility time. Ctrl-saline (Sal) and
Ctrl-ketamine (K) mice displayed equal levels of immobility
time (Figure 1B). In SD mice, ketamine (SD-K) significantly
decreased immobility time when compared with saline (SD-
Sal) (Figure 1C, D). These data indicate that ketamine
increases resilience to behavioral despair as measured by
the FST.

Dominant interaction is a robust way of testing the induc-
tion of depressive-like behavior by SD (10) (Figure 1E). As
expected, SD-Sal mice spent significantly more time inves-
tigating an empty enclosure quadrant than Ctrl-Sal mice
(Figure 1F). Ctrl (Sal or K) mice spent an equivalent amount
of time investigating the empty enclosure quadrant. SD-K
mice exhibited significantly less time investigating the empty
enclosure quadrant when compared with SD-Sal mice. Sim-
ilarly, SD-K mice exhibited a significantly increased willingness
to interact with the CD-1 when compared with SD-Sal mice
(Figure 1G). There was an overall effect of SD and of ketamine
on decreasing the distance traveled, but the interaction was
not significant (Figure 1H).

To determine if this exploration deficit extended to neutral
environments, open field exploration was investigated in an
arena scented with female urine (Supplemental Figure S3). We
did not detect any differences in the empty quadrant or the
urine quadrant between Ctrl and SD mice. Furthermore, to
determine if social avoidance generalized to other mice, we
also assessed social interaction with a novel mouse
(Supplemental Figure S4). We did not find an effect of SD or
ketamine on social interaction. In summary, these data
suggest that SD decreases exploration and willingness to
interact with a CD-1 aggressor and that prior ketamine
administration protects against this deleterious effect of SD
on social behavior.

An Injection of Ketamine Before SD Does Not Impact
Anxiety-like Behavior or Contextual Fear Memory

We next examined the effects of ketamine on anxiety-like
behavior and cognitive tests. In the NSF paradigm, we found
no significant effect of SD or ketamine on the latency to feed
(Figure 2A). In fact, all groups showed similar latencies
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(Figure 2B). This effect is confounded: despite having compa-
rable body weights before and after SD (Figure 2C), SD mice
lost significantly more weight during the 12-hour fast preceding
NSF than Ctrl mice (Figure 2D). Possibly as a result, SD mice
ate more in a home cage following NSF when compared with
Ctrl mice (Figure 2E). These findings suggest that SD signifi-
cantly alters metabolism in 129S6/SvEv mice.

We observed a significant effect of SD in an anxiety-
related test, the elevated plus maze (EPM). SD mice spent
more time in the closed arms than Ctrl mice (Figure 2F).
However, there was no significant effect of ketamine in either

group. The absence of an effect of ketamine in the EPM is
consistent with previous studies (33,34), as it remains to be
established if ketamine is as robust an anxiolytic as it is an
antidepressant (35).

Finally, we assessed the impact of prior treatment with
ketamine on one-shock contextual fear conditioning (CFC)
(36,37) (Figure 2G). One group previously found that SD
increased context-elicited fear following three-shock CFC
(38). However, we chose to utilize a weak CFC training
paradigm, as we have previously shown this one-shock CFC
paradigm to be sensitive to the ablation of adult hippocampal

Figure 1. Ketamine protects
against depressive-like behavior fol-
lowing social defeat (SD). (A) Experi-
mental design. (B) On day 2 of the
forced swim test (FST), group housed
(Ctrl)-saline (Sal) and Ctrl-ketamine (K)
mice did not differ from each other.
(C) SD-K mice exhibited significantly
less immobility time when compared
with SD-Sal mice. (D) Average immo-
bility time for minutes 3 to 6 was
increased in the SD-Sal mice when
compared with Ctrl-Sal mice. The SD-
K mice displayed an average immobi-
lity time that was less than the SD-Sal
mice. (E) Dominant interaction (DI)
traces. (F) SD-Sal mice spent signifi-
cantly more time investigating the
empty enclosure when compared with
the Ctrl-Sal mice. Conversely, SD-K
mice spent significantly less time
investigating the empty enclosure
when compared with the SD-Sal mice.
(G) SD-K mice spent considerably
more time investigating a CD-1
mouse when compared with SD-Sal
mice. (H) There was an overall effect
of SD and of ketamine on decreasing
the distance traveled during social
interaction, but the interaction did
not reach significance. (n 5 13–15
male mice per group). Error bars
represent 6 SEM. *p , .05, **p ,
.01, ***p , .001. CFC, contextual fear
conditioning; EPM, elevated plus
maze; NSF, novelty suppressed feed-
ing; Sac, sacrifice.
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neurogenesis (36,37) and to SD (26). Here, we found no effect
of either SD or ketamine on baseline freezing levels on day 1 of
CFC training (Figure 2H). Ketamine or SD had no effect on
freezing during exposure to the fearful context A (Figure 2I) or
a novel context B (Figure 2J). Though this does not allow us to
assess any stress resilience effect of ketamine, as there is no
effect of stress to protect against, it does at least demonstrate
that a single injection of ketamine does not appear to interfere
with the ability to form contextual memories in mice.

The Ketamine-Induced Improvement Is Dose-
Specific

We next examined a dose titration curve of ketamine. Mice
were administered 0, 10, 30, or 90 mg kg21 of ketamine before
the start of SD. After 2 weeks of SD, mice underwent the FST

and CORT levels were measured following a brief stressor. We
replicated our previous SD effect, as SD-Sal mice displayed
significantly more immobility time in the FST when compared
with Ctrl-Sal (Figure 3A). However, SD-Sal and SD-K (10 mg
kg21) mice did not differ in immobility time (Figure 3B). SD-K
(30 mg kg21) mice again displayed significantly less immobility
when compared with SD-Sal mice (Figure 3C). SD-Sal and SD-
K (90 mg kg21) mice did not differ in immobility time
(Figure 3D, E).

As the hypothalamic-pituitary-adrenal (HPA) axis is dysre-
gulated in mice following SD (14), we also tested whether
ketamine protected against the deleterious effect of SD on the
stress response. Following a brief stressor, SD-Sal mice had
significantly lower levels of CORT than Ctrl-Sal mice
(Figure 3F), suggesting that SD blunts the response of the
HPA axis. However, all ketamine-injected mice did not differ

Figure 2. Ketamine does not protect against anxiety-like behavior or impair contextual fear conditioning learning following social defeat (SD). (A,B) In the
novelty suppressed feeding (NSF) paradigm, all groups had equivalent average latencies to approach the food pellet. (C) Body weight did not differ between any
of the groups before the start of NSF. (D) SD mice lost approximately 25% more body weight than group housed (Ctrl) mice. (E) SD mice consumed significantly
more food than Ctrl mice. (F) In the elevated plus maze test, SD mice spent significantly more time in the closed arms when compared with Ctrl mice. (G–J) All
groups of mice had comparable levels of freezing during contextual fear conditioning training in context A, following re-exposure to fearful context A, and during
exposure to a novel context B. (n 5 13–15 male mice per group). Error bars represent 6 SEM. **p , .01, ***p , .001. K, ketamine; Sal, saline.
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from Ctrl-Sal mice, suggesting that ketamine partially restores
the HPA axis. To determine if adult hippocampal neurogenesis
was modulating, as least in part, these effects, we measured
maturation of newborn neurons and proliferation of newborn
neurons by quantifying the levels of doublecortin and Ki67,
respectively. We did not observe an effect of ketamine on
adult hippocampal neurogenesis (Supplemental Figure S5).
These data suggest that the ketamine improvement in
depressive-like behavior may be mediated in part by changes
in HPA functionality but not necessarily by adult hippocampal
neurogenesis.

Prophylactic Ketamine Alters Fighting Behavior
During SD Bouts

To determine if ketamine also affected behavior during SD, we
analyzed individual fighting bouts. The total fighting bout
length did not differ between groups (Supplemental Figure
S6A). However, the average immobility during week 2 was
significantly decreased in SD-K mice when compared with
SD-Sal mice (Supplemental Figure S6B). The percent of time
vocalizing (Supplemental Figure S6C) and number of
approaches to the CD-1 (Supplemental Figure S6D) did not
differ between the groups. These data suggest that mice
administered ketamine may not be as fearful of the CD-1 mice
and, therefore, spend less time immobile.

We next analyzed the latency of the CD-1 to attack the
129S6/SvEv mouse (Supplemental Figure S6E–G). CD-1s
comparably attacked SD-Sal and SD-K (10 or 90 mg kg21)
mice. However, at the start of SD, CD-1s attacked SD-K (30
mg kg21) mice significantly later than SD-Sal mice. These data
suggest that perhaps the mice receiving K (30 mg kg21) have
an advantageous ongoing response to SD when compared
with Sal mice.

Fluoxetine Treatment Before SD Does Not Protect
Against the Induction of Depressive-like Behavior

We next determined if this protective effect of ketamine
extended to other antidepressants. Mice were administered
3 weeks of fluoxetine (Flx) (18 mg kg21) treatment before the
start of SD (Figure 4A; Supplemental Figure S7). On day 2 of
the FST, Ctrl-Vehicle (Veh) and Ctrl-Flx displayed equal levels
of immobility time (Figure 4B). In SD mice, fluoxetine did not
improve immobility time induced by SD (Figure 4C, D). These
data indicate that fluoxetine, unlike ketamine, is not capable of
preventing stress-induced behavioral despair as measured by
the FST.

We also assessed a number of other behaviors following
fluoxetine treatment (Supplemental Figure S8). Fluoxetine
treatment did not significantly alter anxiety or cognition but
did affect metabolism (Supplemental Figure S8G–H).

Figure 3. The ketamine-induced protection against depressive-like behavior is dose-specific. (A) On day 2 of the forced swim test (FST), social defeat (SD)-
saline (Sal) mice displayed significantly more immobility time in the FST when compared with group housed (Ctrl)-Sal mice. (B) SD-Sal and SD-ketamine (K)
(10 mg kg21) mice did not differ in immobility. (C) SD-K (30 mg kg21) mice displayed significantly less immobility time when compared with SD-Sal mice. (D)
SD-Sal and SD-K (90 mg kg21) mice did not differ in immobility time. (E) For minutes 3 to 6 (averaged), SD-Sal mice displayed significantly more immobility in
the FST when compared with Ctrl-Sal mice. SD-K (30 mg kg21) mice again displayed decreased immobility when compared with SD-Sal mice. (F) Following a
brief stressor, SD-Sal mice had significantly lower levels of corticosterone when compared with Ctrl-Sal mice. (n 5 7–8 male mice per group). Error bars
represent 6 SEM. *p , .05.
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Interestingly, unlike SD-K (30 mg kg21) mice, SD-Flx mice do
not display differences during SD bouts when compared with
SD-Veh mice (Supplemental Figure S9). These data suggest
that fluoxetine treatment cannot protect against depressive-
like behavior as ketamine does.

Ketamine Administered After SD Does Not Improve
Depressive-like Behavior

To compare the robustness of prophylactic ketamine relative
to its typical use as an antidepressant, we next asked if
ketamine could improve behavioral despair if administered

after SD (Figure 5A). Mice were administered 2 weeks of SD
and then received one injection of saline or ketamine the day
after the final SD session. On day 2 of the FST, Ctrl-Sal and
Ctrl-K mice did not display different immobility time
(Figure 5B). SD-Sal and SD-K mice had similar levels of
immobility time (Figure 5C). We averaged minutes 3 to 6 and
found that SD increased immobility time, but ketamine given
after SD did not decrease immobility time (Figure 5D). These
data indicate that ketamine more potently decreases behav-
ioral despair in the FST when given as a prophylactic before
SD than after SD.

Figure 4. Fluoxetine (Flx) does not
protect against depressive-like beha-
vior following social defeat (SD). (A)
Experimental design. (B) On day 2 of
the forced swim test (FST), group
housed (Ctrl)-vehicle (Veh) and Ctrl-
Flx mice did not differ from each
other. (C) SD-Veh and SD-Flx mice
exhibited similar amounts of immobi-
lity time. (D) Average immobility time
for minutes 3 to 6 was increased in
the SD-Veh mice when compared
with Ctrl-Veh mice. (n 5 8 male mice
per group). Error bars represent 6
SEM. *p , .05. CFC, contextual fear
conditioning; EPM, elevated plus
maze; NSF, novelty suppressed feed-
ing; Sac, sacrifice.

Figure 5. Ketamine (K) given after
social defeat (SD) does not improve
depressive-like behavior. (A) Experi-
mental design. (B) On day 2 of the
forced swim test (FST), group housed
(Ctrl)-saline (Sal) and Ctrl-K mice did
not differ from each other. (C) SD-Sal
and SD-K mice had similar levels of
immobility time. (D) Average immobi-
lity time for minutes 3 to 6 was
increased in the SD-Sal mice when
compared with Ctrl-Sal mice. (n 5 12–
15 male mice per group). Error bars
represent 6 SEM. *p , .05. CFC,
contextual fear conditioning; EPM,
elevated plus maze; NSF, novelty
suppressed feeding; Sac, sacrifice.
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We also assessed a number of other behaviors following
ketamine treatment (Supplemental Figure S10). In Ctrl mice,
ketamine decreased the latency to eat in the NSF when
compared with saline (Supplemental Figure S10A). This effect
was abolished in the SD mice, most likely due to weight loss
differences between Ctrl and SD mice (Supplemental Figure
S10B–C). Interestingly, ketamine lessened the percentage of
weight loss in the SD mice when compared with saline,
possibly by protecting against stress-induced hypophagia
(Supplemental Figure S10D). Ketamine also did not
impact CFC learning (Supplemental Figure S10G–J). Most
importantly, although we did not detect differences from
prophylactic ketamine treatment, we did determine that ket-
amine administered after SD significantly increases the num-
ber of Ki671 cells in the dentate gyrus (Supplemental Figure
S10K).

Prophylactic Ketamine Protects Against Learned
Helplessness

We hypothesized that ketamine would protect against LH, a
paradigm in which a mouse is exposed to inescapable shocks
(28–30). Mice were injected with saline or ketamine and

administered an inescapable shock stress protocol (LH train-
ing) 1 week later (Figure 6A). Two weeks later, mice were
administered a shock escape protocol (LH testing) and the
latency to escape the shock was measured. The activity in the
habituation phase during testing did not differ between mice
administered saline or ketamine (Figure 6B). However, mice
injected with ketamine had a decreased latency to escape the
shock when compared with mice injected with saline
(Figure 6C, D). Moreover, the session length was significantly
shorter in the ketamine mice than in the saline mice
(Figure 6E). These data indicate that ketamine protection is
not just limited to SD stress.

Prophylactic Ketamine Protects Against the
Depressive-like Effects of Chronic Corticosterone
Treatment

To address whether ketamine was protective in a third stress
model, we utilized a mouse model of anxiety/depression
based on elevation of glucocorticoids (3 weeks of chronic
CORT administration in C57BL/6NTac mice) (27). We tested
the protective effects of a chronic fluoxetine treatment (18 mg
kg21 for 3 weeks) or a single injection of ketamine (10, 30, or
90 mg kg21) given before CORT administration (Figure 7A). We
found that ketamine (90 mg kg21) and fluoxetine prevented the
CORT-induced increase in body weight (Supplemental Figure
S11A).

Both ketamine (90 mg kg21) and fluoxetine decreased
immobility time on day 2 in the FST (Figure 7B, C). Chronic
CORT induced depressive-like symptoms (e.g., increased
grooming latency) in the ST (Figure 7D). Here, ketamine (90
mg kg21), but not fluoxetine, prevented the chronic CORT-
induced depressive-like phenotype (Figure 7D). These data
indicate that the protective effect of ketamine extends to a
third depression model.

In the NSF, ketamine (10 and 90 mg kg21) prevented the
chronic CORT-induced increase in latency to feed (Figure 7E;
Supplemental Figure S11). However, only ketamine (90 mg kg21)
increased home cage food consumption (Figure 7F). Finally, we
assayed anxiety behavior using the EPM (Supplemental Figure
S12). CORT-Veh mice spent more time in the closed arms than
Veh-Veh mice. Neither ketamine nor fluoxetine robustly protected
against this anxiety-like phenotype. In summary, these data
suggest that 90 mg kg21 of ketamine is the most effective dose
in protecting against depressive-like behavior following chronic
CORT treatment in C57BL/6NTac mice.

Ketamine Administered After Chronic
Corticosterone Does Not Improve Depressive-like
Behavior

Finally, as in the SD model, we measured the behavioral
impact of ketamine when given after CORT (Supplemental
Figure S13A). In this experimental design, mice were admin-
istered 4 weeks of CORT and then received either one
injection of saline or ketamine, or vehicle or fluoxetine for 2
weeks. Here, we utilized the tail suspension test (TST) and the
NSF to test the same behavior on multiple occasions.
Fluoxetine, but not ketamine, decreased immobility time in
the TST at both time points tested following CORT
(Supplemental Figure S13B, C). In the NSF, CORT treatment

Figure 6. Ketamine (K) protects against depressive-like behavior in
learned helplessness (LH). (A) Experimental design. (B) Activity in the
habituation phase during testing did not differ between groups. (C, D)
The latency to escape the shock was significantly less in the K-injected
mice when compared with the saline (Sal)-injected mice. (E) The total
session length for all 30 trials was significantly less in the K-injected mice
when compared with the Sal-injected mice. (n 5 8–9 male mice per
group). Error bars represent 6 SEM. *p , .05. ITI, intertrial interval; ns,
nonsignificant.
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increased the latency to feed when compared with Veh
treatment. Fluoxetine, but not ketamine, decreased the latency
to feed 14 days, but not 7 days, after the start of treatment
(Supplemental Figure S13D–I). In summary, as previously
demonstrated in the SD model, these data further indicate
that ketamine more potently improves depressive-like behav-
ior when given as a prophylactic before CORT treatment rather
than after CORT treatment.

DISCUSSION

Here, we have shown that a single injection of ketamine
administered before SD protected mice against stress-induced
increased immobility time in the FST. Additionally, ketamine
protected mice against stress-induced social avoidance of an
aggressor mouse. We found that mice administered ketamine
before SD were protected against stress-induced depressive-
like behavior, but consistent with the literature definition of
stress resilience, their behavior in anxiety tests and levels of
adult hippocampal neurogenesis were not significantly altered.
Interestingly, in the SD paradigm, only a subanesthetic dose (30
mg kg21) of ketamine was found to be effective.

The prophylactic effect of ketamine was recapitulated in
two additional models. In LH, ketamine decreased depressive-
like, helpless behavior. In the CORT model, ketamine was
protective against depressive-like behaviors (FST, ST), anxiety
(NSF), and metabolic changes (body weight), albeit at a slightly
higher dose (90 mg kg21) than in SD or LH. The efficacy of the
higher dose in the CORT model is perhaps attributable to
mouse strain differences (C57BL/6NTac vs. 129S6/SvEv).
Nevertheless, the dose administered in the CORT model is
in the anesthetic range, whereas the dose in the SD/LH model
is subanesthetic. If an equivalent anesthetic dose were
required to obtain prophylactic efficacy in humans, acute side
effects would need to be considered when developing treat-
ment regimens.

Administration of the classic antidepressant fluoxetine
before stress did not consistently or robustly protect against
stress-induced depressive-like behavior. In the SD model,
fluoxetine did not improve immobility time in the FST, but in
the CORT model, fluoxetine protected against immobility time
in the FST and body weight alterations. Thus, it remains to be
fully determined if antidepressant drugs other than ketamine
can protect against depressive-like behavior. Perhaps other

Figure 7. Ketamine (K) protects against depressive-like and anxiety behavior induced with a neuroendocrine model. (A) Experimental paradigm schematic.
(B, C) Corticosterone (CORT) mice administered K (90 mg kg21) or fluoxetine (Flx) (18 mg kg21/day) exhibited significantly reduced immobility in the forced
swim test (FST). (D) Chronic CORT increased the latency to groom during the sucrose splash test (ST). In contrast to Flx, K for the highest doses tested (90
mg kg21) decreased the latency to groom during the ST. (E) K (10 and 90 mg kg21) decreased the latency to feed in the novelty suppressed feeding (NSF).
(F) K (90 mg kg21) increased home food consumption. (n 5 10–15 male mice per group). Error bars represent 6 SEM. #p , .05, ##p , .01. EPM, elevated plus
maze; Sal, saline; Veh, vehicle.
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drugs may be more useful in protecting against coincident
stress-induced pathologies (e.g., anxiety, cognitive deficits,
metabolic disturbances).

Though preventing psychopathology has obvious advan-
tages over noncurative medication regimens, we also wanted
to assess the relative potencies of ketamine’s protective and
antidepressant effects. Interestingly, when ketamine was
administered following stress, we did not observe a significant
decrease in immobility time in the FST or TST. In our SD
model, we utilized a 30 mg kg21 dose, but in the CORT model,
we utilized a 10 mg kg21 dose to compare with more recent
studies using ketamine as an antidepressant in C57BL mice
(12,33). This suggests that the beneficial effects of ketamine
on stress-induced pathology may be more robust when given
before stress. In contrast, Donahue et al. (12) recently found
the converse when they administered ketamine either 1 hour
after the final SD session or 24 hours before the first SD
session. A high (20 mg kg21)—but not low (2.5 mg kg21)—
dose of ketamine following the final SD session attenuated
social avoidance but not anhedonia. Conversely, when ket-
amine (20 mg kg21) was administered before SD, it did not
attenuate social avoidance. The lack of effect in their experi-
ments, however, does not mean that ketamine’s protective
effect is not as robust as we suggest. The effect of ketamine is
less likely effective, as a C57BL/6J strain is utilized in the
Donahue et al. (12) study, but as we have shown in the CORT
model, a higher dose is necessary for prophylactic efficacy in
C57BL mice. For future studies, we believe that a dose
titration curve is necessary in each model. Based on our data,
we predict that ketamine dosing for prophylactic administra-
tion may likely differ from antidepressant administration.

Ketamine-induced resilience is robust and long lasting—
persisting at least 3 weeks postinjection in the SD model and 4
weeks postinjection in the CORT model. It is worth noting that
as the half-life of ketamine is only a few hours in rodents (39),
ketamine is not bioactive at any point during the SD fighting
bouts, LH, or CORT administration. Thus, the process by
which ketamine protects against depressive-like behavior is
necessarily self-maintaining. Further investigation will be
required to identify the mechanisms underlying this process.
We have shown, however, that ketamine can alter ongoing
response to a chronic stressor. In the SD model, our data
suggest that ketamine alters the way in which mice react to
the fighting bouts, which may contribute to the differences in
developing depressive-like behavior at a later time point. Not
only do the SD-K (30 mg kg21) mice have a decreased
immobility time during the fighting bouts, but also the CD-1
mice attack the SD-K (30 mg kg21) mice at greater latencies.

Work done characterizing stress resilience in other models
has implicated a series of mechanisms, including adult hippo-
campal neurogenesis, HPA axis output (10,13,14), ΔFosB
expression in the prefrontal cortex (11,40) and striatum (12),
activation of the infralimbic cortex and the mesolimbic dop-
aminergic system (4,5,11,12,41–44), glutamatergic tone (38),
and altered leukocyte and cytokine profiles (15,16). Addition-
ally, ketamine has been shown to induce rapid and persistent
remodeling of synapses (45). In our model, ketamine admin-
istration acutely, but transiently, increased proliferative adult
hippocampal neurogenesis. Whether this contributes to mech-
anisms of prophylactic or antidepressant ketamine remains to

be determined. As ketamine prevents SD-induced HPA axis
dysregulation, we hypothesize that the HPA axis may partially
mediate the differences in how the SD-K mice respond to the
SD fighting bouts. Further analysis will be needed to elucidate
the mechanisms underlying ketamine’s resilience-enhancing
properties. It is worth noting that these mechanisms are likely
divergent from those of ketamine’s antidepressant effects.

In summary, these experiments demonstrate that ketamine has
a long-lasting resilience-enhancing effect and protects against the
deleterious effects of chronic stress on depressive-like behaviors.
Because the protective effect of ketamine persists beyond its
half-life of 2 to 2.5 hours, assuming the prophylactic effect
translates to humans, it is potentially useful as a vaccine-like
strategy in at-risk populations where high-stress conditions
can be predicted. Active combat soldiers offer a good
example of a predictably at-risk patient population. Adminis-
tration of ketamine before deployment may mitigate the
emergence of posttraumatic stress disorder or other stress-
related disorders in this vulnerable population. How far out this
prophylaxis persists is as of yet unknown. Whether subse-
quent injections would have a similar, increasing, or delete-
rious effect on stress resilience also has yet to be tested. If
these effects do translate from mice to humans, ketamine may
offer a novel, clinic-ready approach to protect and prevent at-
risk patients from developing stress-induced disorders.
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